On the efficiency of adaptive MCMC algorithms
نویسندگان
چکیده
منابع مشابه
Adaptive independent sticky MCMC algorithms
Monte Carlo methods have become essential tools to solve complex Bayesian inference problems in different fields, such as computational statistics, machine learning, and statistical signal processing. In this work, we introduce a novel class of adaptive Monte Carlo methods, called adaptive independent sticky Markov Chain Monte Carlo (MCMC) algorithms, to sample efficiently from any bounded targ...
متن کاملOn the e ciency of adaptive MCMC algorithms
Abstract We study a class of adaptive Markov Chain Monte Carlo (MCMC) processes which aim at behaving as an optimal target process via a learning procedure. We show, under appropriate conditions, that the adaptive process and the optimal (nonadaptive) MCMC process share identical asymptotic properties. The special case of adaptive MCMC algorithms governed by stochastic approximation is consider...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Statistical efficiency of adaptive algorithms
The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2007
ISSN: 1083-589X
DOI: 10.1214/ecp.v12-1320